Metamath Proof Explorer


Theorem unipwrVD

Description: Virtual deduction proof of unipwr . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion unipwrVD A 𝒫 A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 snid x x
3 idn1 x A x A
4 snelpwi x A x 𝒫 A
5 3 4 e1a x A x 𝒫 A
6 elunii x x x 𝒫 A x 𝒫 A
7 2 5 6 e01an x A x 𝒫 A
8 7 in1 x A x 𝒫 A
9 8 ssriv A 𝒫 A