Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Theorems proved using Virtual Deduction
unipwrVD
Metamath Proof Explorer
Description: Virtual deduction proof of unipwr . (Contributed by Alan Sare , 25-Aug-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
unipwrVD
⊢ A ⊆ ⋃ 𝒫 A
Proof
Step
Hyp
Ref
Expression
1
vex
⊢ x ∈ V
2
1
snid
⊢ x ∈ x
3
idn1
⊢ x ∈ A → x ∈ A
4
snelpwi
⊢ x ∈ A → x ∈ 𝒫 A
5
3 4
e1a
⊢ x ∈ A → x ∈ 𝒫 A
6
elunii
⊢ x ∈ x ∧ x ∈ 𝒫 A → x ∈ ⋃ 𝒫 A
7
2 5 6
e01an
⊢ x ∈ A → x ∈ ⋃ 𝒫 A
8
7
in1
⊢ x ∈ A → x ∈ ⋃ 𝒫 A
9
8
ssriv
⊢ A ⊆ ⋃ 𝒫 A