Description: Virtual deduction proof of snelpwi . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | snelpwrVD | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ∈ 𝒫 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex | ⊢ { 𝐴 } ∈ V | |
2 | idn1 | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | snssi | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) | |
4 | 2 3 | e1a | ⊢ ( 𝐴 ∈ 𝐵 ▶ { 𝐴 } ⊆ 𝐵 ) |
5 | elpwg | ⊢ ( { 𝐴 } ∈ V → ( { 𝐴 } ∈ 𝒫 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) ) | |
6 | 5 | biimprd | ⊢ ( { 𝐴 } ∈ V → ( { 𝐴 } ⊆ 𝐵 → { 𝐴 } ∈ 𝒫 𝐵 ) ) |
7 | 1 4 6 | e01 | ⊢ ( 𝐴 ∈ 𝐵 ▶ { 𝐴 } ∈ 𝒫 𝐵 ) |
8 | 7 | in1 | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ∈ 𝒫 𝐵 ) |