Metamath Proof Explorer


Theorem snelpwrVD

Description: Virtual deduction proof of snelpwi . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snelpwrVD ( 𝐴𝐵 → { 𝐴 } ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 snex { 𝐴 } ∈ V
2 idn1 (    𝐴𝐵    ▶    𝐴𝐵    )
3 snssi ( 𝐴𝐵 → { 𝐴 } ⊆ 𝐵 )
4 2 3 e1a (    𝐴𝐵    ▶    { 𝐴 } ⊆ 𝐵    )
5 elpwg ( { 𝐴 } ∈ V → ( { 𝐴 } ∈ 𝒫 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) )
6 5 biimprd ( { 𝐴 } ∈ V → ( { 𝐴 } ⊆ 𝐵 → { 𝐴 } ∈ 𝒫 𝐵 ) )
7 1 4 6 e01 (    𝐴𝐵    ▶    { 𝐴 } ∈ 𝒫 𝐵    )
8 7 in1 ( 𝐴𝐵 → { 𝐴 } ∈ 𝒫 𝐵 )