Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Theorems proved using Virtual Deduction
snelpwrVD
Metamath Proof Explorer
Description: Virtual deduction proof of snelpwi . (Contributed by Alan Sare , 25-Aug-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
snelpwrVD
⊢ A ∈ B → A ∈ 𝒫 B
Proof
Step
Hyp
Ref
Expression
1
snex
⊢ A ∈ V
2
idn1
⊢ A ∈ B → A ∈ B
3
snssi
⊢ A ∈ B → A ⊆ B
4
2 3
e1a
⊢ A ∈ B → A ⊆ B
5
elpwg
⊢ A ∈ V → A ∈ 𝒫 B ↔ A ⊆ B
6
5
biimprd
⊢ A ∈ V → A ⊆ B → A ∈ 𝒫 B
7
1 4 6
e01
⊢ A ∈ B → A ∈ 𝒫 B
8
7
in1
⊢ A ∈ B → A ∈ 𝒫 B