Metamath Proof Explorer


Theorem snen1g

Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion snen1g A1𝑜AV

Proof

Step Hyp Ref Expression
1 eqcom A=xx=A
2 vex xV
3 2 sneqr x=Ax=A
4 sneq x=Ax=A
5 3 4 impbii x=Ax=A
6 1 5 bitri A=xx=A
7 6 exbii xA=xxx=A
8 en1 A1𝑜xA=x
9 isset AVxx=A
10 7 8 9 3bitr4i A1𝑜AV