Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snen1g | |- ( { A } ~~ 1o <-> A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( { A } = { x } <-> { x } = { A } ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | sneqr | |- ( { x } = { A } -> x = A ) |
| 4 | sneq | |- ( x = A -> { x } = { A } ) |
|
| 5 | 3 4 | impbii | |- ( { x } = { A } <-> x = A ) |
| 6 | 1 5 | bitri | |- ( { A } = { x } <-> x = A ) |
| 7 | 6 | exbii | |- ( E. x { A } = { x } <-> E. x x = A ) |
| 8 | en1 | |- ( { A } ~~ 1o <-> E. x { A } = { x } ) |
|
| 9 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 10 | 7 8 9 | 3bitr4i | |- ( { A } ~~ 1o <-> A e. _V ) |