Metamath Proof Explorer


Theorem snen1g

Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion snen1g
|- ( { A } ~~ 1o <-> A e. _V )

Proof

Step Hyp Ref Expression
1 eqcom
 |-  ( { A } = { x } <-> { x } = { A } )
2 vex
 |-  x e. _V
3 2 sneqr
 |-  ( { x } = { A } -> x = A )
4 sneq
 |-  ( x = A -> { x } = { A } )
5 3 4 impbii
 |-  ( { x } = { A } <-> x = A )
6 1 5 bitri
 |-  ( { A } = { x } <-> x = A )
7 6 exbii
 |-  ( E. x { A } = { x } <-> E. x x = A )
8 en1
 |-  ( { A } ~~ 1o <-> E. x { A } = { x } )
9 isset
 |-  ( A e. _V <-> E. x x = A )
10 7 8 9 3bitr4i
 |-  ( { A } ~~ 1o <-> A e. _V )