Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snen1g | ⊢ ( { 𝐴 } ≈ 1o ↔ 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | ⊢ ( { 𝐴 } = { 𝑥 } ↔ { 𝑥 } = { 𝐴 } ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | sneqr | ⊢ ( { 𝑥 } = { 𝐴 } → 𝑥 = 𝐴 ) |
| 4 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 5 | 3 4 | impbii | ⊢ ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 6 | 1 5 | bitri | ⊢ ( { 𝐴 } = { 𝑥 } ↔ 𝑥 = 𝐴 ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 { 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| 8 | en1 | ⊢ ( { 𝐴 } ≈ 1o ↔ ∃ 𝑥 { 𝐴 } = { 𝑥 } ) | |
| 9 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( { 𝐴 } ≈ 1o ↔ 𝐴 ∈ V ) |