Metamath Proof Explorer


Theorem snen1g

Description: A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion snen1g ( { 𝐴 } ≈ 1o𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 eqcom ( { 𝐴 } = { 𝑥 } ↔ { 𝑥 } = { 𝐴 } )
2 vex 𝑥 ∈ V
3 2 sneqr ( { 𝑥 } = { 𝐴 } → 𝑥 = 𝐴 )
4 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
5 3 4 impbii ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 )
6 1 5 bitri ( { 𝐴 } = { 𝑥 } ↔ 𝑥 = 𝐴 )
7 6 exbii ( ∃ 𝑥 { 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 𝑥 = 𝐴 )
8 en1 ( { 𝐴 } ≈ 1o ↔ ∃ 𝑥 { 𝐴 } = { 𝑥 } )
9 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
10 7 8 9 3bitr4i ( { 𝐴 } ≈ 1o𝐴 ∈ V )