Description: A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | snen1el | ⊢ ( { 𝐴 } ≈ 1o ↔ 𝐴 ∈ { 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snen1g | ⊢ ( { 𝐴 } ≈ 1o ↔ 𝐴 ∈ V ) | |
2 | snidb | ⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) | |
3 | 1 2 | bitri | ⊢ ( { 𝐴 } ≈ 1o ↔ 𝐴 ∈ { 𝐴 } ) |