Metamath Proof Explorer


Theorem snen1el

Description: A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion snen1el ( { 𝐴 } ≈ 1o𝐴 ∈ { 𝐴 } )

Proof

Step Hyp Ref Expression
1 snen1g ( { 𝐴 } ≈ 1o𝐴 ∈ V )
2 snidb ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } )
3 1 2 bitri ( { 𝐴 } ≈ 1o𝐴 ∈ { 𝐴 } )