Metamath Proof Explorer


Theorem snex

Description: A singleton is a set. Theorem 7.12 of Quine p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT . (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 19-May-2013)

Ref Expression
Assertion snex AV

Proof

Step Hyp Ref Expression
1 snexg AVAV
2 snprc ¬AVA=
3 2 biimpi ¬AVA=
4 0ex V
5 3 4 eqeltrdi ¬AVAV
6 1 5 pm2.61i AV