Metamath Proof Explorer


Theorem snres0

Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis snres0.1 BV
Assertion snres0 ABC=¬AC

Proof

Step Hyp Ref Expression
1 snres0.1 BV
2 relres RelABC
3 reldm0 RelABCABC=domABC=
4 2 3 ax-mp ABC=domABC=
5 dmres domABC=CdomAB
6 1 dmsnop domAB=A
7 6 ineq2i CdomAB=CA
8 5 7 eqtri domABC=CA
9 8 eqeq1i domABC=CA=
10 disjsn CA=¬AC
11 4 9 10 3bitri ABC=¬AC