Metamath Proof Explorer


Theorem snstrvtxval

Description: The set of vertices of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See vtxvalsnop for the (degenerate) case where V = ( Basendx ) . (Contributed by AV, 23-Sep-2020)

Ref Expression
Hypotheses snstrvtxval.v V V
snstrvtxval.g G = Base ndx V
Assertion snstrvtxval V Base ndx Vtx G = V

Proof

Step Hyp Ref Expression
1 snstrvtxval.v V V
2 snstrvtxval.g G = Base ndx V
3 necom V Base ndx Base ndx V
4 fvex Base ndx V
5 4 1 2 funsndifnop Base ndx V ¬ G V × V
6 3 5 sylbi V Base ndx ¬ G V × V
7 6 iffalsed V Base ndx if G V × V 1 st G Base G = Base G
8 vtxval Vtx G = if G V × V 1 st G Base G
9 8 a1i V Base ndx Vtx G = if G V × V 1 st G Base G
10 2 1strbas V V V = Base G
11 1 10 mp1i V Base ndx V = Base G
12 7 9 11 3eqtr4d V Base ndx Vtx G = V