Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020) (Avoid depending on this detail.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funsndifnop.a | |
|
funsndifnop.b | |
||
funsndifnop.g | |
||
Assertion | funsndifnop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsndifnop.a | |
|
2 | funsndifnop.b | |
|
3 | funsndifnop.g | |
|
4 | elvv | |
|
5 | 1 2 | funsn | |
6 | funeq | |
|
7 | 5 6 | mpbiri | |
8 | 3 7 | ax-mp | |
9 | funeq | |
|
10 | vex | |
|
11 | vex | |
|
12 | 10 11 | funop | |
13 | 9 12 | bitrdi | |
14 | eqeq2 | |
|
15 | eqeq1 | |
|
16 | opex | |
|
17 | 16 | sneqr | |
18 | 1 2 | opth | |
19 | eqtr3 | |
|
20 | 19 | a1d | |
21 | 18 20 | sylbi | |
22 | 17 21 | syl | |
23 | 15 22 | syl6bi | |
24 | 3 23 | ax-mp | |
25 | 14 24 | syl6bi | |
26 | 25 | com23 | |
27 | 26 | impcom | |
28 | 27 | exlimiv | |
29 | 28 | com12 | |
30 | 13 29 | sylbid | |
31 | 8 30 | mpi | |
32 | 31 | exlimivv | |
33 | 4 32 | sylbi | |
34 | 33 | necon3ai | |