Metamath Proof Explorer


Theorem funsndifnop

Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a A V
funsndifnop.b B V
funsndifnop.g G = A B
Assertion funsndifnop A B ¬ G V × V

Proof

Step Hyp Ref Expression
1 funsndifnop.a A V
2 funsndifnop.b B V
3 funsndifnop.g G = A B
4 elvv G V × V x y G = x y
5 1 2 funsn Fun A B
6 funeq G = A B Fun G Fun A B
7 5 6 mpbiri G = A B Fun G
8 3 7 ax-mp Fun G
9 funeq G = x y Fun G Fun x y
10 vex x V
11 vex y V
12 10 11 funop Fun x y a x = a x y = a a
13 9 12 bitrdi G = x y Fun G a x = a x y = a a
14 eqeq2 x y = a a G = x y G = a a
15 eqeq1 G = A B G = a a A B = a a
16 opex A B V
17 16 sneqr A B = a a A B = a a
18 1 2 opth A B = a a A = a B = a
19 eqtr3 A = a B = a A = B
20 19 a1d A = a B = a x = a A = B
21 18 20 sylbi A B = a a x = a A = B
22 17 21 syl A B = a a x = a A = B
23 15 22 syl6bi G = A B G = a a x = a A = B
24 3 23 ax-mp G = a a x = a A = B
25 14 24 syl6bi x y = a a G = x y x = a A = B
26 25 com23 x y = a a x = a G = x y A = B
27 26 impcom x = a x y = a a G = x y A = B
28 27 exlimiv a x = a x y = a a G = x y A = B
29 28 com12 G = x y a x = a x y = a a A = B
30 13 29 sylbid G = x y Fun G A = B
31 8 30 mpi G = x y A = B
32 31 exlimivv x y G = x y A = B
33 4 32 sylbi G V × V A = B
34 33 necon3ai A B ¬ G V × V