Metamath Proof Explorer


Theorem funsndifnop

Description: A singleton of an ordered pair is not an ordered pair if the components are different. (Contributed by AV, 23-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a AV
funsndifnop.b BV
funsndifnop.g G=AB
Assertion funsndifnop AB¬GV×V

Proof

Step Hyp Ref Expression
1 funsndifnop.a AV
2 funsndifnop.b BV
3 funsndifnop.g G=AB
4 elvv GV×VxyG=xy
5 1 2 funsn FunAB
6 funeq G=ABFunGFunAB
7 5 6 mpbiri G=ABFunG
8 3 7 ax-mp FunG
9 funeq G=xyFunGFunxy
10 vex xV
11 vex yV
12 10 11 funop Funxyax=axy=aa
13 9 12 bitrdi G=xyFunGax=axy=aa
14 eqeq2 xy=aaG=xyG=aa
15 eqeq1 G=ABG=aaAB=aa
16 opex ABV
17 16 sneqr AB=aaAB=aa
18 1 2 opth AB=aaA=aB=a
19 eqtr3 A=aB=aA=B
20 19 a1d A=aB=ax=aA=B
21 18 20 sylbi AB=aax=aA=B
22 17 21 syl AB=aax=aA=B
23 15 22 syl6bi G=ABG=aax=aA=B
24 3 23 ax-mp G=aax=aA=B
25 14 24 syl6bi xy=aaG=xyx=aA=B
26 25 com23 xy=aax=aG=xyA=B
27 26 impcom x=axy=aaG=xyA=B
28 27 exlimiv ax=axy=aaG=xyA=B
29 28 com12 G=xyax=axy=aaA=B
30 13 29 sylbid G=xyFunGA=B
31 8 30 mpi G=xyA=B
32 31 exlimivv xyG=xyA=B
33 4 32 sylbi GV×VA=B
34 33 necon3ai AB¬GV×V