Metamath Proof Explorer


Theorem funsneqopb

Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a AV
funsndifnop.b BV
funsndifnop.g G=AB
Assertion funsneqopb A=BGV×V

Proof

Step Hyp Ref Expression
1 funsndifnop.a AV
2 funsndifnop.b BV
3 funsndifnop.g G=AB
4 opeq1 A=BAB=BB
5 4 sneqd A=BAB=BB
6 2 snopeqopsnid BB=BB
7 5 6 eqtrdi A=BAB=BB
8 3 7 eqtrid A=BG=BB
9 snex BV
10 9 9 opelvv BBV×V
11 8 10 eqeltrdi A=BGV×V
12 1 2 3 funsndifnop AB¬GV×V
13 12 necon4ai GV×VA=B
14 11 13 impbii A=BGV×V