Metamath Proof Explorer


Theorem son2lpi

Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 ROrS
soi.2 RS×S
Assertion son2lpi ¬ARBBRA

Proof

Step Hyp Ref Expression
1 soi.1 ROrS
2 soi.2 RS×S
3 1 2 soirri ¬ARA
4 1 2 sotri ARBBRAARA
5 3 4 mto ¬ARBBRA