Metamath Proof Explorer
		
		
		
		Description:  A strict order relation has no 2-cycle loops.  (Contributed by NM, 10-Feb-1996)  (Revised by Mario Carneiro, 10-May-2013)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						soi.1 | 
						⊢ 𝑅  Or  𝑆  | 
					
					
						 | 
						 | 
						soi.2 | 
						⊢ 𝑅  ⊆  ( 𝑆  ×  𝑆 )  | 
					
				
					 | 
					Assertion | 
					son2lpi | 
					⊢  ¬  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							soi.1 | 
							⊢ 𝑅  Or  𝑆  | 
						
						
							| 2 | 
							
								
							 | 
							soi.2 | 
							⊢ 𝑅  ⊆  ( 𝑆  ×  𝑆 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							soirri | 
							⊢ ¬  𝐴 𝑅 𝐴  | 
						
						
							| 4 | 
							
								1 2
							 | 
							sotri | 
							⊢ ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  𝐴 𝑅 𝐴 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mto | 
							⊢ ¬  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  |