| Step |
Hyp |
Ref |
Expression |
| 1 |
|
soi.1 |
⊢ 𝑅 Or 𝑆 |
| 2 |
|
soi.2 |
⊢ 𝑅 ⊆ ( 𝑆 × 𝑆 ) |
| 3 |
2
|
brel |
⊢ ( 𝐵 𝑅 𝐶 → ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 4 |
3
|
simpld |
⊢ ( 𝐵 𝑅 𝐶 → 𝐵 ∈ 𝑆 ) |
| 5 |
|
sotric |
⊢ ( ( 𝑅 Or 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( 𝐵 𝑅 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) ) ) |
| 6 |
1 5
|
mpan |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐵 𝑅 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) ) ) |
| 7 |
6
|
con2bid |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) ↔ ¬ 𝐵 𝑅 𝐴 ) ) |
| 8 |
|
breq1 |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 𝑅 𝐶 ↔ 𝐴 𝑅 𝐶 ) ) |
| 9 |
8
|
biimpd |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) |
| 10 |
1 2
|
sotri |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
| 11 |
10
|
ex |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) |
| 12 |
9 11
|
jaoi |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 𝑅 𝐵 ) → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) |
| 13 |
7 12
|
biimtrrdi |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ¬ 𝐵 𝑅 𝐴 → ( 𝐵 𝑅 𝐶 → 𝐴 𝑅 𝐶 ) ) ) |
| 14 |
13
|
com3r |
⊢ ( 𝐵 𝑅 𝐶 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ¬ 𝐵 𝑅 𝐴 → 𝐴 𝑅 𝐶 ) ) ) |
| 15 |
4 14
|
mpand |
⊢ ( 𝐵 𝑅 𝐶 → ( 𝐴 ∈ 𝑆 → ( ¬ 𝐵 𝑅 𝐴 → 𝐴 𝑅 𝐶 ) ) ) |
| 16 |
15
|
3imp231 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ¬ 𝐵 𝑅 𝐴 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |