Metamath Proof Explorer


Theorem sorpssin

Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion sorpssin [⊂]OrABACABCA

Proof

Step Hyp Ref Expression
1 simprl [⊂]OrABACABA
2 df-ss BCBC=B
3 eleq1 BC=BBCABA
4 2 3 sylbi BCBCABA
5 1 4 syl5ibrcom [⊂]OrABACABCBCA
6 simprr [⊂]OrABACACA
7 sseqin2 CBBC=C
8 eleq1 BC=CBCACA
9 7 8 sylbi CBBCACA
10 6 9 syl5ibrcom [⊂]OrABACACBBCA
11 sorpssi [⊂]OrABACABCCB
12 5 10 11 mpjaod [⊂]OrABACABCA