Metamath Proof Explorer


Theorem sorpssun

Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion sorpssun [⊂]OrABACABCA

Proof

Step Hyp Ref Expression
1 simprr [⊂]OrABACACA
2 ssequn1 BCBC=C
3 eleq1 BC=CBCACA
4 2 3 sylbi BCBCACA
5 1 4 syl5ibrcom [⊂]OrABACABCBCA
6 simprl [⊂]OrABACABA
7 ssequn2 CBBC=B
8 eleq1 BC=BBCABA
9 7 8 sylbi CBBCABA
10 6 9 syl5ibrcom [⊂]OrABACACBBCA
11 sorpssi [⊂]OrABACABCCB
12 5 10 11 mpjaod [⊂]OrABACABCA