Metamath Proof Explorer


Theorem sosn

Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion sosn RelRROrA¬ARA

Proof

Step Hyp Ref Expression
1 elsni xAx=A
2 elsni yAy=A
3 2 eqcomd yAA=y
4 1 3 sylan9eq xAyAx=y
5 4 3mix2d xAyAxRyx=yyRx
6 5 rgen2 xAyAxRyx=yyRx
7 df-so ROrARPoAxAyAxRyx=yyRx
8 6 7 mpbiran2 ROrARPoA
9 posn RelRRPoA¬ARA
10 8 9 bitrid RelRROrA¬ARA