Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
sosn
Next ⟩
frsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
sosn
Description:
Strict ordering on a singleton.
(Contributed by
Mario Carneiro
, 28-Dec-2014)
Ref
Expression
Assertion
sosn
⊢
Rel
⁡
R
→
R
Or
A
↔
¬
A
R
A
Proof
Step
Hyp
Ref
Expression
1
elsni
⊢
x
∈
A
→
x
=
A
2
elsni
⊢
y
∈
A
→
y
=
A
3
2
eqcomd
⊢
y
∈
A
→
A
=
y
4
1
3
sylan9eq
⊢
x
∈
A
∧
y
∈
A
→
x
=
y
5
4
3mix2d
⊢
x
∈
A
∧
y
∈
A
→
x
R
y
∨
x
=
y
∨
y
R
x
6
5
rgen2
⊢
∀
x
∈
A
∀
y
∈
A
x
R
y
∨
x
=
y
∨
y
R
x
7
df-so
⊢
R
Or
A
↔
R
Po
A
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
∨
x
=
y
∨
y
R
x
8
6
7
mpbiran2
⊢
R
Or
A
↔
R
Po
A
9
posn
⊢
Rel
⁡
R
→
R
Po
A
↔
¬
A
R
A
10
8
9
bitrid
⊢
Rel
⁡
R
→
R
Or
A
↔
¬
A
R
A