Metamath Proof Explorer


Theorem sotrine

Description: Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sotrine R Or A B A C A B C B R C C R B

Proof

Step Hyp Ref Expression
1 sotrieq R Or A B A C A B = C ¬ B R C C R B
2 1 bicomd R Or A B A C A ¬ B R C C R B B = C
3 2 necon1abid R Or A B A C A B C B R C C R B