Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Properties of relationships
sotrine
Next ⟩
eqfunresadj
Metamath Proof Explorer
Ascii
Unicode
Theorem
sotrine
Description:
Trichotomy law for strict orderings.
(Contributed by
Scott Fenton
, 8-Dec-2021)
Ref
Expression
Assertion
sotrine
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
≠
C
↔
B
R
C
∨
C
R
B
Proof
Step
Hyp
Ref
Expression
1
sotrieq
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
=
C
↔
¬
B
R
C
∨
C
R
B
2
1
bicomd
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
¬
B
R
C
∨
C
R
B
↔
B
=
C
3
2
necon1abid
⊢
R
Or
A
∧
B
∈
A
∧
C
∈
A
→
B
≠
C
↔
B
R
C
∨
C
R
B