Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spc2ed.x | |
|
spc2ed.y | |
||
spc2ed.1 | |
||
Assertion | spc2ed | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2ed.x | |
|
2 | spc2ed.y | |
|
3 | spc2ed.1 | |
|
4 | elisset | |
|
5 | elisset | |
|
6 | 4 5 | anim12i | |
7 | exdistrv | |
|
8 | 6 7 | sylibr | |
9 | nfv | |
|
10 | 9 1 | nfan | |
11 | nfv | |
|
12 | 11 2 | nfan | |
13 | anass | |
|
14 | ancom | |
|
15 | 14 | anbi1i | |
16 | 13 15 | bitr3i | |
17 | 3 | biimparc | |
18 | 16 17 | sylbir | |
19 | 18 | ex | |
20 | 12 19 | eximd | |
21 | 10 20 | eximd | |
22 | 21 | impancom | |
23 | 8 22 | sylan2 | |