Metamath Proof Explorer


Theorem spc2ed

Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)

Ref Expression
Hypotheses spc2ed.x xχ
spc2ed.y yχ
spc2ed.1 φx=Ay=Bψχ
Assertion spc2ed φAVBWχxyψ

Proof

Step Hyp Ref Expression
1 spc2ed.x xχ
2 spc2ed.y yχ
3 spc2ed.1 φx=Ay=Bψχ
4 elisset AVxx=A
5 elisset BWyy=B
6 4 5 anim12i AVBWxx=Ayy=B
7 exdistrv xyx=Ay=Bxx=Ayy=B
8 6 7 sylibr AVBWxyx=Ay=B
9 nfv xφ
10 9 1 nfan xφχ
11 nfv yφ
12 11 2 nfan yφχ
13 anass χφx=Ay=Bχφx=Ay=B
14 ancom χφφχ
15 14 anbi1i χφx=Ay=Bφχx=Ay=B
16 13 15 bitr3i χφx=Ay=Bφχx=Ay=B
17 3 biimparc χφx=Ay=Bψ
18 16 17 sylbir φχx=Ay=Bψ
19 18 ex φχx=Ay=Bψ
20 12 19 eximd φχyx=Ay=Byψ
21 10 20 eximd φχxyx=Ay=Bxyψ
22 21 impancom φxyx=Ay=Bχxyψ
23 8 22 sylan2 φAVBWχxyψ