Metamath Proof Explorer


Theorem spc2egv

Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypothesis spc2egv.1 x=Ay=Bφψ
Assertion spc2egv AVBWψxyφ

Proof

Step Hyp Ref Expression
1 spc2egv.1 x=Ay=Bφψ
2 elisset AVxx=A
3 elisset BWyy=B
4 2 3 anim12i AVBWxx=Ayy=B
5 exdistrv xyx=Ay=Bxx=Ayy=B
6 4 5 sylibr AVBWxyx=Ay=B
7 1 biimprcd ψx=Ay=Bφ
8 7 2eximdv ψxyx=Ay=Bxyφ
9 6 8 syl5com AVBWψxyφ