Metamath Proof Explorer


Theorem spesbc

Description: Existence form of spsbc . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion spesbc [˙A / x]˙ φ x φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ φ A V
2 rspesbca A V [˙A / x]˙ φ x V φ
3 1 2 mpancom [˙A / x]˙ φ x V φ
4 rexv x V φ x φ
5 3 4 sylib [˙A / x]˙ φ x φ