Metamath Proof Explorer


Theorem splid

Description: Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015) (Proof shortened by AV, 14-Oct-2022)

Ref Expression
Assertion splid SWordAX0YY0SSspliceXYSsubstrXY=S

Proof

Step Hyp Ref Expression
1 ovex SsubstrXYV
2 splval SWordAX0YY0SSsubstrXYVSspliceXYSsubstrXY=SprefixX++SsubstrXY++SsubstrYS
3 1 2 mp3anr3 SWordAX0YY0SSspliceXYSsubstrXY=SprefixX++SsubstrXY++SsubstrYS
4 ccatpfx SWordAX0YY0SSprefixX++SsubstrXY=SprefixY
5 4 3expb SWordAX0YY0SSprefixX++SsubstrXY=SprefixY
6 5 oveq1d SWordAX0YY0SSprefixX++SsubstrXY++SsubstrYS=SprefixY++SsubstrYS
7 simpl SWordAX0YY0SSWordA
8 simprr SWordAX0YY0SY0S
9 elfzuz2 Y0SS0
10 9 ad2antll SWordAX0YY0SS0
11 eluzfz2 S0S0S
12 10 11 syl SWordAX0YY0SS0S
13 ccatpfx SWordAY0SS0SSprefixY++SsubstrYS=SprefixS
14 7 8 12 13 syl3anc SWordAX0YY0SSprefixY++SsubstrYS=SprefixS
15 pfxid SWordASprefixS=S
16 15 adantr SWordAX0YY0SSprefixS=S
17 14 16 eqtrd SWordAX0YY0SSprefixY++SsubstrYS=S
18 6 17 eqtrd SWordAX0YY0SSprefixX++SsubstrXY++SsubstrYS=S
19 3 18 eqtrd SWordAX0YY0SSspliceXYSsubstrXY=S