Metamath Proof Explorer


Theorem splval

Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by AV, 11-May-2020) (Revised by AV, 15-Oct-2022)

Ref Expression
Assertion splval SVFWTXRYSspliceFTR=SprefixF++R++SsubstrTS

Proof

Step Hyp Ref Expression
1 df-splice splice=sV,bVsprefix1st1stb++2ndb++ssubstr2nd1stbs
2 1 a1i SVFWTXRYsplice=sV,bVsprefix1st1stb++2ndb++ssubstr2nd1stbs
3 simprl SVFWTXRYs=Sb=FTRs=S
4 2fveq3 b=FTR1st1stb=1st1stFTR
5 4 adantl s=Sb=FTR1st1stb=1st1stFTR
6 ot1stg FWTXRY1st1stFTR=F
7 6 adantl SVFWTXRY1st1stFTR=F
8 5 7 sylan9eqr SVFWTXRYs=Sb=FTR1st1stb=F
9 3 8 oveq12d SVFWTXRYs=Sb=FTRsprefix1st1stb=SprefixF
10 fveq2 b=FTR2ndb=2ndFTR
11 10 adantl s=Sb=FTR2ndb=2ndFTR
12 ot3rdg RY2ndFTR=R
13 12 3ad2ant3 FWTXRY2ndFTR=R
14 13 adantl SVFWTXRY2ndFTR=R
15 11 14 sylan9eqr SVFWTXRYs=Sb=FTR2ndb=R
16 9 15 oveq12d SVFWTXRYs=Sb=FTRsprefix1st1stb++2ndb=SprefixF++R
17 2fveq3 b=FTR2nd1stb=2nd1stFTR
18 17 adantl s=Sb=FTR2nd1stb=2nd1stFTR
19 ot2ndg FWTXRY2nd1stFTR=T
20 19 adantl SVFWTXRY2nd1stFTR=T
21 18 20 sylan9eqr SVFWTXRYs=Sb=FTR2nd1stb=T
22 3 fveq2d SVFWTXRYs=Sb=FTRs=S
23 21 22 opeq12d SVFWTXRYs=Sb=FTR2nd1stbs=TS
24 3 23 oveq12d SVFWTXRYs=Sb=FTRssubstr2nd1stbs=SsubstrTS
25 16 24 oveq12d SVFWTXRYs=Sb=FTRsprefix1st1stb++2ndb++ssubstr2nd1stbs=SprefixF++R++SsubstrTS
26 elex SVSV
27 26 adantr SVFWTXRYSV
28 otex FTRV
29 28 a1i SVFWTXRYFTRV
30 ovexd SVFWTXRYSprefixF++R++SsubstrTSV
31 2 25 27 29 30 ovmpod SVFWTXRYSspliceFTR=SprefixF++R++SsubstrTS