Metamath Proof Explorer


Theorem sprbisymrel

Description: There is a bijection between the subsets of the set of pairs over a fixed set V and the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p P=𝒫PairsV
sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
Assertion sprbisymrel VWff:P1-1 ontoR

Proof

Step Hyp Ref Expression
1 sprsymrelf.p P=𝒫PairsV
2 sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
3 fvex PairsVV
4 3 pwex 𝒫PairsVV
5 1 4 eqeltri PV
6 mptexg PVpPxy|cpc=xyV
7 5 6 mp1i VWpPxy|cpc=xyV
8 eqid pPxy|cpc=xy=pPxy|cpc=xy
9 1 2 8 sprsymrelf1o VWpPxy|cpc=xy:P1-1 ontoR
10 f1oeq1 f=pPxy|cpc=xyf:P1-1 ontoRpPxy|cpc=xy:P1-1 ontoR
11 10 spcegv pPxy|cpc=xyVpPxy|cpc=xy:P1-1 ontoRff:P1-1 ontoR
12 7 9 11 sylc VWff:P1-1 ontoR