Metamath Proof Explorer


Theorem sprid

Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprid p|aVbVp=ab=p|abp=ab

Proof

Step Hyp Ref Expression
1 rexv aVbVp=ababVp=ab
2 rexv bVp=abbp=ab
3 2 exbii abVp=ababp=ab
4 1 3 bitri aVbVp=ababp=ab
5 4 abbii p|aVbVp=ab=p|abp=ab