Metamath Proof Explorer


Theorem sprsymrelf1o

Description: The mapping F is a bijection between the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p P=𝒫PairsV
sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
sprsymrelf.f F=pPxy|cpc=xy
Assertion sprsymrelf1o VWF:P1-1 ontoR

Proof

Step Hyp Ref Expression
1 sprsymrelf.p P=𝒫PairsV
2 sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
3 sprsymrelf.f F=pPxy|cpc=xy
4 1 2 3 sprsymrelf1 F:P1-1R
5 4 a1i VWF:P1-1R
6 1 2 3 sprsymrelfo VWF:PontoR
7 df-f1o F:P1-1 ontoRF:P1-1RF:PontoR
8 5 6 7 sylanbrc VWF:P1-1 ontoR