Metamath Proof Explorer


Theorem sqrtlim

Description: The inverse square root function converges to zero. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Assertion sqrtlim n+1n0

Proof

Step Hyp Ref Expression
1 rpcn n+n
2 cxpsqrt nn12=n
3 1 2 syl n+n12=n
4 3 oveq2d n+1n12=1n
5 4 mpteq2ia n+1n12=n+1n
6 1rp 1+
7 rphalfcl 1+12+
8 cxplim 12+n+1n120
9 6 7 8 mp2b n+1n120
10 5 9 eqbrtrri n+1n0