Metamath Proof Explorer


Theorem cxplim

Description: A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014) (Revised by Mario Carneiro, 18-May-2016)

Ref Expression
Assertion cxplim A+n+1nA0

Proof

Step Hyp Ref Expression
1 rpre x+x
2 1 adantl A+x+x
3 rpge0 x+0x
4 3 adantl A+x+0x
5 rpre A+A
6 5 renegcld A+A
7 6 adantr A+x+A
8 rpcn A+A
9 rpne0 A+A0
10 8 9 negne0d A+A0
11 10 adantr A+x+A0
12 7 11 rereccld A+x+1A
13 2 4 12 recxpcld A+x+x1A
14 simprl A+x+n+x1A<nn+
15 5 ad2antrr A+x+n+x1A<nA
16 14 15 rpcxpcld A+x+n+x1A<nnA+
17 16 rpreccld A+x+n+x1A<n1nA+
18 17 rprege0d A+x+n+x1A<n1nA01nA
19 absid 1nA01nA1nA=1nA
20 18 19 syl A+x+n+x1A<n1nA=1nA
21 simplr A+x+n+x1A<nx+
22 simprr A+x+n+x1A<nx1A<n
23 rpreccl A+1A+
24 23 ad2antrr A+x+n+x1A<n1A+
25 24 rpcnd A+x+n+x1A<n1A
26 21 25 cxprecd A+x+n+x1A<n1x1A=1x1A
27 rpcn x+x
28 27 ad2antlr A+x+n+x1A<nx
29 rpne0 x+x0
30 29 ad2antlr A+x+n+x1A<nx0
31 28 30 25 cxpnegd A+x+n+x1A<nx1A=1x1A
32 1cnd A+x+n+x1A<n1
33 8 ad2antrr A+x+n+x1A<nA
34 9 ad2antrr A+x+n+x1A<nA0
35 32 33 34 divneg2d A+x+n+x1A<n1A=1A
36 35 oveq2d A+x+n+x1A<nx1A=x1A
37 26 31 36 3eqtr2d A+x+n+x1A<n1x1A=x1A
38 33 34 recidd A+x+n+x1A<nA1A=1
39 38 oveq2d A+x+n+x1A<nnA1A=n1
40 14 15 25 cxpmuld A+x+n+x1A<nnA1A=nA1A
41 14 rpcnd A+x+n+x1A<nn
42 41 cxp1d A+x+n+x1A<nn1=n
43 39 40 42 3eqtr3d A+x+n+x1A<nnA1A=n
44 22 37 43 3brtr4d A+x+n+x1A<n1x1A<nA1A
45 rpreccl x+1x+
46 45 ad2antlr A+x+n+x1A<n1x+
47 46 rpred A+x+n+x1A<n1x
48 46 rpge0d A+x+n+x1A<n01x
49 16 rpred A+x+n+x1A<nnA
50 16 rpge0d A+x+n+x1A<n0nA
51 47 48 49 50 24 cxplt2d A+x+n+x1A<n1x<nA1x1A<nA1A
52 44 51 mpbird A+x+n+x1A<n1x<nA
53 21 16 52 ltrec1d A+x+n+x1A<n1nA<x
54 20 53 eqbrtrd A+x+n+x1A<n1nA<x
55 54 expr A+x+n+x1A<n1nA<x
56 55 ralrimiva A+x+n+x1A<n1nA<x
57 breq1 y=x1Ay<nx1A<n
58 57 rspceaimv x1An+x1A<n1nA<xyn+y<n1nA<x
59 13 56 58 syl2anc A+x+yn+y<n1nA<x
60 59 ralrimiva A+x+yn+y<n1nA<x
61 id n+n+
62 rpcxpcl n+AnA+
63 61 5 62 syl2anr A+n+nA+
64 63 rpreccld A+n+1nA+
65 64 rpcnd A+n+1nA
66 65 ralrimiva A+n+1nA
67 rpssre +
68 67 a1i A++
69 66 68 rlim0lt A+n+1nA0x+yn+y<n1nA<x
70 60 69 mpbird A+n+1nA0