Metamath Proof Explorer


Theorem rlim0lt

Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 28-Feb-2015)

Ref Expression
Hypotheses rlim0.1 φzAB
rlim0.2 φA
Assertion rlim0lt φzAB0x+yzAy<zB<x

Proof

Step Hyp Ref Expression
1 rlim0.1 φzAB
2 rlim0.2 φA
3 0cnd φ0
4 1 2 3 rlim2lt φzAB0x+yzAy<zB0<x
5 subid1 BB0=B
6 5 fveq2d BB0=B
7 6 breq1d BB0<xB<x
8 7 imbi2d By<zB0<xy<zB<x
9 8 ralimi zABzAy<zB0<xy<zB<x
10 ralbi zAy<zB0<xy<zB<xzAy<zB0<xzAy<zB<x
11 1 9 10 3syl φzAy<zB0<xzAy<zB<x
12 11 rexbidv φyzAy<zB0<xyzAy<zB<x
13 12 ralbidv φx+yzAy<zB0<xx+yzAy<zB<x
14 4 13 bitrd φzAB0x+yzAy<zB<x