Database BASIC ALGEBRAIC STRUCTURES Rings Semirings srgass  
				
		 
		
			
		 
		Description:   Associative law for the multiplication operation of a semiring.
       (Contributed by NM , 27-Aug-2011)   (Revised by Mario Carneiro , 6-Jan-2015)   (Revised by Thierry Arnoux , 1-Apr-2018) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						srgcl.b   ⊢   B  =  Base  R      
					 
					
						srgcl.t   ⊢   ·  ˙ =  ⋅  R      
					 
				
					Assertion 
					srgass    ⊢    R  ∈  SRing    ∧    X  ∈  B    ∧   Y  ∈  B    ∧   Z  ∈  B      →   X  ·  ˙ Y ·  ˙ Z =  X  ·  ˙ Y  ·  ˙ Z        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							srgcl.b  ⊢   B  =  Base  R      
						
							2 
								
							 
							srgcl.t  ⊢   ·  ˙ =  ⋅  R      
						
							3 
								
							 
							eqid  ⊢   mulGrp  R =  mulGrp  R      
						
							4 
								3 
							 
							srgmgp   ⊢   R  ∈  SRing    →   mulGrp  R ∈  Mnd         
						
							5 
								3  1 
							 
							mgpbas  ⊢   B  =  Base  mulGrp  R      
						
							6 
								3  2 
							 
							mgpplusg  ⊢   ·  ˙ =  +  mulGrp  R      
						
							7 
								5  6 
							 
							mndass   ⊢    mulGrp  R ∈  Mnd    ∧    X  ∈  B    ∧   Y  ∈  B    ∧   Z  ∈  B      →   X  ·  ˙ Y ·  ˙ Z =  X  ·  ˙ Y  ·  ˙ Z        
						
							8 
								4  7 
							 
							sylan   ⊢    R  ∈  SRing    ∧    X  ∈  B    ∧   Y  ∈  B    ∧   Z  ∈  B      →   X  ·  ˙ Y ·  ˙ Z =  X  ·  ˙ Y  ·  ˙ Z