Metamath Proof Explorer


Theorem srngstr

Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypothesis srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
Assertion srngstr RStruct14

Proof

Step Hyp Ref Expression
1 srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
2 eqid BasendxB+ndx+˙ndx·˙=BasendxB+ndx+˙ndx·˙
3 2 rngstr BasendxB+ndx+˙ndx·˙Struct13
4 4nn 4
5 starvndx *ndx=4
6 4 5 strle1 *ndx˙Struct44
7 3lt4 3<4
8 3 6 7 strleun BasendxB+ndx+˙ndx·˙*ndx˙Struct14
9 1 8 eqbrtri RStruct14