Metamath Proof Explorer


Theorem ss2ab1

Description: Class abstractions in a subclass relationship, closed form. One direction of ss2ab using fewer axioms. (Contributed by SN, 22-Dec-2024)

Ref Expression
Assertion ss2ab1 xφψx|φx|ψ

Proof

Step Hyp Ref Expression
1 spsbim xφψtxφtxψ
2 df-clab tx|φtxφ
3 df-clab tx|ψtxψ
4 1 2 3 3imtr4g xφψtx|φtx|ψ
5 4 ssrdv xφψx|φx|ψ