Metamath Proof Explorer


Theorem ss2rab

Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999)

Ref Expression
Assertion ss2rab xA|φxA|ψxAφψ

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 df-rab xA|ψ=x|xAψ
3 1 2 sseq12i xA|φxA|ψx|xAφx|xAψ
4 ss2ab x|xAφx|xAψxxAφxAψ
5 df-ral xAφψxxAφψ
6 imdistan xAφψxAφxAψ
7 6 albii xxAφψxxAφxAψ
8 5 7 bitr2i xxAφxAψxAφψ
9 3 4 8 3bitri xA|φxA|ψxAφψ