Metamath Proof Explorer


Theorem ssc1

Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses isssc.1 φHFnS×S
isssc.2 φJFnT×T
ssc1.3 φHcatJ
Assertion ssc1 φST

Proof

Step Hyp Ref Expression
1 isssc.1 φHFnS×S
2 isssc.2 φJFnT×T
3 ssc1.3 φHcatJ
4 sscrel Relcat
5 4 brrelex2i HcatJJV
6 3 5 syl φJV
7 2 ssclem φJVTV
8 6 7 mpbid φTV
9 1 2 8 isssc φHcatJSTxSySxHyxJy
10 3 9 mpbid φSTxSySxHyxJy
11 10 simpld φST