Metamath Proof Explorer


Theorem ssdif0

Description: Subclass expressed in terms of difference. Exercise 7 of TakeutiZaring p. 22. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion ssdif0 ABAB=

Proof

Step Hyp Ref Expression
1 iman xAxB¬xA¬xB
2 eldif xABxA¬xB
3 1 2 xchbinxr xAxB¬xAB
4 3 albii xxAxBx¬xAB
5 dfss2 ABxxAxB
6 eq0 AB=x¬xAB
7 4 5 6 3bitr4i ABAB=