Metamath Proof Explorer


Theorem sseldd

Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses sseld.1 φAB
sseldd.2 φCA
Assertion sseldd φCB

Proof

Step Hyp Ref Expression
1 sseld.1 φAB
2 sseldd.2 φCA
3 1 sseld φCACB
4 2 3 mpd φCB