Metamath Proof Explorer


Theorem sseq12d

Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999)

Ref Expression
Hypotheses sseq1d.1 φA=B
sseq12d.2 φC=D
Assertion sseq12d φACBD

Proof

Step Hyp Ref Expression
1 sseq1d.1 φA=B
2 sseq12d.2 φC=D
3 1 sseq1d φACBC
4 2 sseq2d φBCBD
5 3 4 bitrd φACBD