Metamath Proof Explorer


Theorem sshjval

Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion sshjval ABAB=AB

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 elpw2 A𝒫A
3 1 elpw2 B𝒫B
4 uneq12 x=Ay=Bxy=AB
5 4 fveq2d x=Ay=Bxy=AB
6 5 fveq2d x=Ay=Bxy=AB
7 df-chj =x𝒫,y𝒫xy
8 fvex ABV
9 6 7 8 ovmpoa A𝒫B𝒫AB=AB
10 2 3 9 syl2anbr ABAB=AB