Metamath Proof Explorer


Theorem ssopab2b

Description: Equivalence of ordered pair abstraction subclass and implication. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker ssopab2bw when possible. (Contributed by NM, 27-Dec-1996) (Proof shortened by Mario Carneiro, 18-Nov-2016) (New usage is discouraged.)

Ref Expression
Assertion ssopab2b xy|φxy|ψxyφψ

Proof

Step Hyp Ref Expression
1 nfopab1 _xxy|φ
2 nfopab1 _xxy|ψ
3 1 2 nfss xxy|φxy|ψ
4 nfopab2 _yxy|φ
5 nfopab2 _yxy|ψ
6 4 5 nfss yxy|φxy|ψ
7 ssel xy|φxy|ψxyxy|φxyxy|ψ
8 opabid xyxy|φφ
9 opabid xyxy|ψψ
10 7 8 9 3imtr3g xy|φxy|ψφψ
11 6 10 alrimi xy|φxy|ψyφψ
12 3 11 alrimi xy|φxy|ψxyφψ
13 ssopab2 xyφψxy|φxy|ψ
14 12 13 impbii xy|φxy|ψxyφψ