Metamath Proof Explorer


Theorem sspadd1

Description: A projective subspace sum is a superset of its first summand. ( ssun1 analog.) (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion sspadd1 KBXAYAXX+˙Y

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 ssun1 XXY
4 ssun1 XYXYpA|qXrYpKqjoinKr
5 3 4 sstri XXYpA|qXrYpKqjoinKr
6 eqid K=K
7 eqid joinK=joinK
8 6 7 1 2 paddval KBXAYAX+˙Y=XYpA|qXrYpKqjoinKr
9 5 8 sseqtrrid KBXAYAXX+˙Y