Metamath Proof Explorer


Theorem ssrabdf

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses ssrabdf.1 _xA
ssrabdf.2 _xB
ssrabdf.3 xφ
ssrabdf.4 φBA
ssrabdf.5 φxBψ
Assertion ssrabdf φBxA|ψ

Proof

Step Hyp Ref Expression
1 ssrabdf.1 _xA
2 ssrabdf.2 _xB
3 ssrabdf.3 xφ
4 ssrabdf.4 φBA
5 ssrabdf.5 φxBψ
6 3 5 ralrimia φxBψ
7 2 1 ssrabf BxA|ψBAxBψ
8 4 6 7 sylanbrc φBxA|ψ