Description: RR is a subset of both RR and CC . (Contributed by Steve Rodriguez, 22-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrecnpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri | |
|
2 | eqimss2 | |
|
3 | ax-resscn | |
|
4 | sseq2 | |
|
5 | 3 4 | mpbiri | |
6 | 2 5 | jaoi | |
7 | 1 6 | syl | |