Metamath Proof Explorer


Theorem ssrexf

Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses ssrexf.1 _xA
ssrexf.2 _xB
Assertion ssrexf ABxAφxBφ

Proof

Step Hyp Ref Expression
1 ssrexf.1 _xA
2 ssrexf.2 _xB
3 1 2 nfss xAB
4 ssel ABxAxB
5 4 anim1d ABxAφxBφ
6 3 5 eximd ABxxAφxxBφ
7 df-rex xAφxxAφ
8 df-rex xBφxxBφ
9 6 7 8 3imtr4g ABxAφxBφ