Metamath Proof Explorer


Theorem sstrALT2VD

Description: Virtual deduction proof of sstrALT2 . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sstrALT2VD ABBCAC

Proof

Step Hyp Ref Expression
1 dfss2 ACxxAxC
2 idn1 ABBCABBC
3 simpr ABBCBC
4 2 3 e1a ABBCBC
5 simpl ABBCAB
6 2 5 e1a ABBCAB
7 idn2 ABBC,xAxA
8 ssel2 ABxAxB
9 6 7 8 e12an ABBC,xAxB
10 ssel2 BCxBxC
11 4 9 10 e12an ABBC,xAxC
12 11 in2 ABBCxAxC
13 12 gen11 ABBCxxAxC
14 biimpr ACxxAxCxxAxCAC
15 1 13 14 e01 ABBCAC
16 15 in1 ABBCAC