Metamath Proof Explorer


Theorem sstrALT2VD

Description: Virtual deduction proof of sstrALT2 . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sstrALT2VD A B B C A C

Proof

Step Hyp Ref Expression
1 dfss2 A C x x A x C
2 idn1 A B B C A B B C
3 simpr A B B C B C
4 2 3 e1a A B B C B C
5 simpl A B B C A B
6 2 5 e1a A B B C A B
7 idn2 A B B C , x A x A
8 ssel2 A B x A x B
9 6 7 8 e12an A B B C , x A x B
10 ssel2 B C x B x C
11 4 9 10 e12an A B B C , x A x C
12 11 in2 A B B C x A x C
13 12 gen11 A B B C x x A x C
14 biimpr A C x x A x C x x A x C A C
15 1 13 14 e01 A B B C A C
16 15 in1 A B B C A C