Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
|- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
2 |
|
idn1 |
|- (. ( A C_ B /\ B C_ C ) ->. ( A C_ B /\ B C_ C ) ). |
3 |
|
simpr |
|- ( ( A C_ B /\ B C_ C ) -> B C_ C ) |
4 |
2 3
|
e1a |
|- (. ( A C_ B /\ B C_ C ) ->. B C_ C ). |
5 |
|
simpl |
|- ( ( A C_ B /\ B C_ C ) -> A C_ B ) |
6 |
2 5
|
e1a |
|- (. ( A C_ B /\ B C_ C ) ->. A C_ B ). |
7 |
|
idn2 |
|- (. ( A C_ B /\ B C_ C ) ,. x e. A ->. x e. A ). |
8 |
|
ssel2 |
|- ( ( A C_ B /\ x e. A ) -> x e. B ) |
9 |
6 7 8
|
e12an |
|- (. ( A C_ B /\ B C_ C ) ,. x e. A ->. x e. B ). |
10 |
|
ssel2 |
|- ( ( B C_ C /\ x e. B ) -> x e. C ) |
11 |
4 9 10
|
e12an |
|- (. ( A C_ B /\ B C_ C ) ,. x e. A ->. x e. C ). |
12 |
11
|
in2 |
|- (. ( A C_ B /\ B C_ C ) ->. ( x e. A -> x e. C ) ). |
13 |
12
|
gen11 |
|- (. ( A C_ B /\ B C_ C ) ->. A. x ( x e. A -> x e. C ) ). |
14 |
|
biimpr |
|- ( ( A C_ C <-> A. x ( x e. A -> x e. C ) ) -> ( A. x ( x e. A -> x e. C ) -> A C_ C ) ) |
15 |
1 13 14
|
e01 |
|- (. ( A C_ B /\ B C_ C ) ->. A C_ C ). |
16 |
15
|
in1 |
|- ( ( A C_ B /\ B C_ C ) -> A C_ C ) |