Description: Virtual deduction proof of sstr , transitivity of subclasses, Theorem 6 of Suppes p. 23. This theorem was automatically generated from sstrALT2VD using the command file translate__without__overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sstrALT2 | |- ( ( A C_ B /\ B C_ C ) -> A C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 | |- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
|
2 | id | |- ( ( A C_ B /\ B C_ C ) -> ( A C_ B /\ B C_ C ) ) |
|
3 | simpr | |- ( ( A C_ B /\ B C_ C ) -> B C_ C ) |
|
4 | 2 3 | syl | |- ( ( A C_ B /\ B C_ C ) -> B C_ C ) |
5 | simpl | |- ( ( A C_ B /\ B C_ C ) -> A C_ B ) |
|
6 | 2 5 | syl | |- ( ( A C_ B /\ B C_ C ) -> A C_ B ) |
7 | idd | |- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. A ) ) |
|
8 | ssel2 | |- ( ( A C_ B /\ x e. A ) -> x e. B ) |
|
9 | 6 7 8 | syl6an | |- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. B ) ) |
10 | ssel2 | |- ( ( B C_ C /\ x e. B ) -> x e. C ) |
|
11 | 4 9 10 | syl6an | |- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) ) |
12 | 11 | idiALT | |- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) ) |
13 | 12 | alrimiv | |- ( ( A C_ B /\ B C_ C ) -> A. x ( x e. A -> x e. C ) ) |
14 | biimpr | |- ( ( A C_ C <-> A. x ( x e. A -> x e. C ) ) -> ( A. x ( x e. A -> x e. C ) -> A C_ C ) ) |
|
15 | 1 13 14 | mpsyl | |- ( ( A C_ B /\ B C_ C ) -> A C_ C ) |