Metamath Proof Explorer


Theorem sstrALT2

Description: Virtual deduction proof of sstr , transitivity of subclasses, Theorem 6 of Suppes p. 23. This theorem was automatically generated from sstrALT2VD using the command file translate__without__overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sstrALT2
|- ( ( A C_ B /\ B C_ C ) -> A C_ C )

Proof

Step Hyp Ref Expression
1 dfss2
 |-  ( A C_ C <-> A. x ( x e. A -> x e. C ) )
2 id
 |-  ( ( A C_ B /\ B C_ C ) -> ( A C_ B /\ B C_ C ) )
3 simpr
 |-  ( ( A C_ B /\ B C_ C ) -> B C_ C )
4 2 3 syl
 |-  ( ( A C_ B /\ B C_ C ) -> B C_ C )
5 simpl
 |-  ( ( A C_ B /\ B C_ C ) -> A C_ B )
6 2 5 syl
 |-  ( ( A C_ B /\ B C_ C ) -> A C_ B )
7 idd
 |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. A ) )
8 ssel2
 |-  ( ( A C_ B /\ x e. A ) -> x e. B )
9 6 7 8 syl6an
 |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. B ) )
10 ssel2
 |-  ( ( B C_ C /\ x e. B ) -> x e. C )
11 4 9 10 syl6an
 |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) )
12 11 idiALT
 |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) )
13 12 alrimiv
 |-  ( ( A C_ B /\ B C_ C ) -> A. x ( x e. A -> x e. C ) )
14 biimpr
 |-  ( ( A C_ C <-> A. x ( x e. A -> x e. C ) ) -> ( A. x ( x e. A -> x e. C ) -> A C_ C ) )
15 1 13 14 mpsyl
 |-  ( ( A C_ B /\ B C_ C ) -> A C_ C )