| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ss |
|- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
| 2 |
|
id |
|- ( ( A C_ B /\ B C_ C ) -> ( A C_ B /\ B C_ C ) ) |
| 3 |
|
simpr |
|- ( ( A C_ B /\ B C_ C ) -> B C_ C ) |
| 4 |
2 3
|
syl |
|- ( ( A C_ B /\ B C_ C ) -> B C_ C ) |
| 5 |
|
simpl |
|- ( ( A C_ B /\ B C_ C ) -> A C_ B ) |
| 6 |
2 5
|
syl |
|- ( ( A C_ B /\ B C_ C ) -> A C_ B ) |
| 7 |
|
idd |
|- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. A ) ) |
| 8 |
|
ssel2 |
|- ( ( A C_ B /\ x e. A ) -> x e. B ) |
| 9 |
6 7 8
|
syl6an |
|- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. B ) ) |
| 10 |
|
ssel2 |
|- ( ( B C_ C /\ x e. B ) -> x e. C ) |
| 11 |
4 9 10
|
syl6an |
|- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) ) |
| 12 |
11
|
idiALT |
|- ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) ) |
| 13 |
12
|
alrimiv |
|- ( ( A C_ B /\ B C_ C ) -> A. x ( x e. A -> x e. C ) ) |
| 14 |
|
biimpr |
|- ( ( A C_ C <-> A. x ( x e. A -> x e. C ) ) -> ( A. x ( x e. A -> x e. C ) -> A C_ C ) ) |
| 15 |
1 13 14
|
mpsyl |
|- ( ( A C_ B /\ B C_ C ) -> A C_ C ) |