| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss |  |-  ( A C_ C <-> A. x ( x e. A -> x e. C ) ) | 
						
							| 2 |  | id |  |-  ( ( A C_ B /\ B C_ C ) -> ( A C_ B /\ B C_ C ) ) | 
						
							| 3 |  | simpr |  |-  ( ( A C_ B /\ B C_ C ) -> B C_ C ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A C_ B /\ B C_ C ) -> B C_ C ) | 
						
							| 5 |  | simpl |  |-  ( ( A C_ B /\ B C_ C ) -> A C_ B ) | 
						
							| 6 | 2 5 | syl |  |-  ( ( A C_ B /\ B C_ C ) -> A C_ B ) | 
						
							| 7 |  | idd |  |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. A ) ) | 
						
							| 8 |  | ssel2 |  |-  ( ( A C_ B /\ x e. A ) -> x e. B ) | 
						
							| 9 | 6 7 8 | syl6an |  |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. B ) ) | 
						
							| 10 |  | ssel2 |  |-  ( ( B C_ C /\ x e. B ) -> x e. C ) | 
						
							| 11 | 4 9 10 | syl6an |  |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) ) | 
						
							| 12 | 11 | idiALT |  |-  ( ( A C_ B /\ B C_ C ) -> ( x e. A -> x e. C ) ) | 
						
							| 13 | 12 | alrimiv |  |-  ( ( A C_ B /\ B C_ C ) -> A. x ( x e. A -> x e. C ) ) | 
						
							| 14 |  | biimpr |  |-  ( ( A C_ C <-> A. x ( x e. A -> x e. C ) ) -> ( A. x ( x e. A -> x e. C ) -> A C_ C ) ) | 
						
							| 15 | 1 13 14 | mpsyl |  |-  ( ( A C_ B /\ B C_ C ) -> A C_ C ) |