| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ss | ⊢ ( 𝐴  ⊆  𝐶  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) | 
						
							| 2 |  | id | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  𝐵  ⊆  𝐶 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  𝐵  ⊆  𝐶 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 7 |  | idd | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 8 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 9 | 6 7 8 | syl6an | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 10 |  | ssel2 | ⊢ ( ( 𝐵  ⊆  𝐶  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐶 ) | 
						
							| 11 | 4 9 10 | syl6an | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) | 
						
							| 12 | 11 | idiALT | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) | 
						
							| 13 | 12 | alrimiv | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) | 
						
							| 14 |  | biimpr | ⊢ ( ( 𝐴  ⊆  𝐶  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 )  →  𝐴  ⊆  𝐶 ) ) | 
						
							| 15 | 1 13 14 | mpsyl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  𝐴  ⊆  𝐶 ) |