| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 2 |
|
id |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐵 ) |
| 6 |
2 5
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐵 ) |
| 7 |
|
idd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 8 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 9 |
6 7 8
|
syl6an |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 10 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) |
| 11 |
4 9 10
|
syl6an |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 12 |
11
|
idiALT |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 13 |
12
|
alrimiv |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 14 |
|
biimpr |
⊢ ( ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) ) |
| 15 |
1 13 14
|
mpsyl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |