Metamath Proof Explorer


Theorem sstrALT2VD

Description: Virtual deduction proof of sstrALT2 . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sstrALT2VD ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) )
2 idn1 (    ( 𝐴𝐵𝐵𝐶 )    ▶    ( 𝐴𝐵𝐵𝐶 )    )
3 simpr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐵𝐶 )
4 2 3 e1a (    ( 𝐴𝐵𝐵𝐶 )    ▶    𝐵𝐶    )
5 simpl ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐵 )
6 2 5 e1a (    ( 𝐴𝐵𝐵𝐶 )    ▶    𝐴𝐵    )
7 idn2 (    ( 𝐴𝐵𝐵𝐶 )    ,    𝑥𝐴    ▶    𝑥𝐴    )
8 ssel2 ( ( 𝐴𝐵𝑥𝐴 ) → 𝑥𝐵 )
9 6 7 8 e12an (    ( 𝐴𝐵𝐵𝐶 )    ,    𝑥𝐴    ▶    𝑥𝐵    )
10 ssel2 ( ( 𝐵𝐶𝑥𝐵 ) → 𝑥𝐶 )
11 4 9 10 e12an (    ( 𝐴𝐵𝐵𝐶 )    ,    𝑥𝐴    ▶    𝑥𝐶    )
12 11 in2 (    ( 𝐴𝐵𝐵𝐶 )    ▶    ( 𝑥𝐴𝑥𝐶 )    )
13 12 gen11 (    ( 𝐴𝐵𝐵𝐶 )    ▶   𝑥 ( 𝑥𝐴𝑥𝐶 )    )
14 biimpr ( ( 𝐴𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) ) → ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) → 𝐴𝐶 ) )
15 1 13 14 e01 (    ( 𝐴𝐵𝐵𝐶 )    ▶    𝐴𝐶    )
16 15 in1 ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )