Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
2 |
|
idn1 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ▶ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ) |
3 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
4 |
2 3
|
e1a |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ▶ 𝐵 ⊆ 𝐶 ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐵 ) |
6 |
2 5
|
e1a |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ▶ 𝐴 ⊆ 𝐵 ) |
7 |
|
idn2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) |
8 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
9 |
6 7 8
|
e12an |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
10 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) |
11 |
4 9 10
|
e12an |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐶 ) |
12 |
11
|
in2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ▶ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
13 |
12
|
gen11 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ▶ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
14 |
|
biimpr |
⊢ ( ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) ) |
15 |
1 13 14
|
e01 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) ▶ 𝐴 ⊆ 𝐶 ) |
16 |
15
|
in1 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |