Metamath Proof Explorer


Theorem strb

Description: Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses str.1 A C
str.2 B C
Assertion strb f States f A = 1 f B = 1 A B

Proof

Step Hyp Ref Expression
1 str.1 A C
2 str.2 B C
3 1 2 stri f States f A = 1 f B = 1 A B
4 1 2 stlesi f States A B f A = 1 f B = 1
5 4 com12 A B f States f A = 1 f B = 1
6 5 ralrimiv A B f States f A = 1 f B = 1
7 3 6 impbii f States f A = 1 f B = 1 A B